What would be the probability that none of the cards that were turned over had the value (rank) that you called out?
Before working it, lets consider a related, but simpler question. Suppose you had 3 cards containing values 1,2,3. After you shuffled them, what would be the probability that none of the 3 were in the same position as they were at the start? In mathematical speak you'd ask what is the probability of a derangement.
In this case we can look at all 3! ( i.e 6 ) permutations. And we see that 2 out of 6 are derangements. So the probability of a derangement is 1/3.
You might be tempted to say that for each card, the probability that it is not in its original position is 2/3 and so for the 3 cards the total probability of a drangement is that to the power of 3, i.e. 8/27.
However the flaw with that method is that the probabilities are not independent.
Returning now to that deck of 52 with 4 suits and 13 ranks. There is of course more than one way to work it out. One method would be to write a Monte Carlo simulation. I've done that and the code is below.
Here is a sample output after 100 million simulations:
Found 1623551 survivors out of 1.0E8
So the survival probability is estimated to be: 0.01623551
with a standard deviation of: 1.2638005465673727E-5
Time elapsed: 77.742 seconds
So the probability of surviving to the end without getting any cards right is approximately 1.62%
OK, OK, MC is useful, but not very satisfying. You might think that you could just write a program to work out all 52! permutations and then work out the answer. But alas 52! is a very big number. So if you want an answer before you die, then it might be a good idea to try a different approach.
Well there is another way... In fact I'm sure there any many other ways. I present here a method that I used. Suppose we have slots numbered 1 to 13 and for simplicity we'll number the cards 1 to 13. At the start we have 13 different ranks and each have 4 cards and there are 4 slots available for each of the ranks.
We could represent that as a table of Ranks:
Cards | 0 | 1 | 2 | 3 | 4 |
Slots | |||||
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 13 |
Now suppose we pick one card, then we'll have 12 card ranks with 4 cards remaining
and we'll have 1 card rank that has 3 cards remaining, but still 4 slots.
So in our table of ranks we'll represent that as:
Cards | 0 | 1 | 2 | 3 | 4 |
Slots | |||||
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 12 |
But we'll have to put the card in one of the available slots. Of the 52 slots 48 are allowed.
When we do that we'll have
1 rank with 4 slots and 3 cards remaining
1 rank with 3 slots and 4 cards remaining
12 ranks with 4 slots and 4 cards remaining
In our table we represent that as:
Cards | 0 | 1 | 2 | 3 | 4 |
Slots | |||||
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 1 | 12 |
Using such a table with the probabilities of the transitions, we can write some code that recursively solves the problem.
This is what the code looks like:
import java.io.PrintWriter;
// check if the back slash char is causing problems
public class Calculator {
public static void main ( String[] args){
long startTime = System.currentTimeMillis();
System.out.println("Starting...");
Calculator calc = new Calculator();
calc.calc(); // calc() is the main calculator, calcDebug() is for debugging
long endTime = System.currentTimeMillis();
double elapsedSec = ((double) endTime - (double) startTime) * 0.001d;
System.out.println("\nElapsed time: " + Double.toString(elapsedSec) + " sec.");
System.out.println("Finished.");
}
///////////////////////////////////////////////////////////////////
public void calc(){
System.out.println("Doing calc.");
int suits = 4;
int ranks = 9; // Total number of cards will be: suits * ranks
State s = new State(suits, ranks);
double survivalProb = s.getSurvivalProb();
String key = s.getKey();
String resStr = "\nFor key: " + key + " found prob to be: " + String.format("%1.14f", survivalProb);
System.out.println(resStr);
String pathToFile = "C:/temp/res_" + key + ".txt";
writeToFile(pathToFile, resStr );
}
///////////////////////////////////////////////////////////////
public void calcDebug(){
System.out.println("Doing calc2.");
// "0000000000111111111122222"
// "0123456789012345678901234"
String key = "1001010000000000100000000";
State s = new State(key, 0);
double survivalProb = s.getSurvivalProb();
String resStr = "For key: " + key + " found prob to be: " + String.format("%1.14f", survivalProb);
System.out.println(resStr);
String pathToFile = "C:/temp/res_" + key + ".txt";
writeToFile(pathToFile, resStr );
}
///////////////////////////////////////////////////////////////
public void writeToFile( String pathToFile, String str){
try{
PrintWriter writer = new PrintWriter(pathToFile, "UTF-8");
writer.println(str);
writer.close();
} catch(Exception e){
System.out.println("Caught exception: " + e.getMessage());
}
}
/* Prob(1,4) = 0.375
* Prob(2,2) = 0.166667
* Prob(4,4) = 0.011869
* Prob(4,8) = 0.014967 ( takes 11.6 secs )
* Prob(4,13) = 0.016232
*/
}
/////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
import java.util.Random;
import java.util.TreeMap;
// prob survival = sum ( numCardsLikeThis * numSafeLocations / TotalslotLocations
// * ProbSurvival( next))
// The key is a string 25 chars long,
public class State {
private static final boolean m_debug = false;
private static final long m_seed = 1;
private static final int m_stepsBetweenCaching = 0; //
private static int m_numSuits;
private static TreeMap
private static Random m_rnd;
private String m_key;
private double m_survivalProb;
private int m_totalSlots;
private int m_depth;
///////////////////////////////////////////////////////
State ( int suits, int ranks){
m_depth = 0;
m_numSuits = suits;
String zeros = new String(new char[(suits+1) * (suits+1)]).replace("\0", "0");
String key = adjustKey(suits, suits, zeros, ranks);
initialize( key );
if ( m_debug) printKey ( key );
}
///////////////////////////////////////////////////////
State( String key, int depth){
m_depth = depth;
initialize(key);
}
///////////////////////////////////////////
private void initialize(String key){
if ( m_rnd == null)
m_rnd = new Random(m_seed); // formerly had: ThreadLocalRandom.current();
if ( m_map == null)
m_map = new TreeMap
if( m_numSuits == 0){
double sqrt = Math.sqrt((double) key.length());
m_numSuits = (int) Math.round(sqrt - 0.5f) -1;
if ( m_debug) {
System.out.println( "Have key of length: " + Integer.toString(key.length())
+ " and num suits: " + Integer.toString(m_numSuits) );
}
}
m_key = key;
m_survivalProb = -1; // This indicates that it has not been calculated.
m_totalSlots = calcTotalSlots();
if ( m_debug) printKey(key);
}
///////////////////////////////////////////////////////
private int calcTotalSlots(){
int sum = 0;
for ( int slot = 0 ; slot <= m_numSuits; slot++){
sum += getNumSlots(slot);
}
if ( m_debug) System.out.println("Key: " + m_key + ", total number of slots found is: " + Integer.toString(sum));
return sum;
}
///////////////////////////////////////////////////////
String getKey() { return m_key; }
///////////////////////////////////////////////////////
double calcSurvivalProb(){
if ( m_totalSlots == 0)
return 1.0; // if we reach the end and there are no slots left, then we have survived.
double prob = 0;
for ( int slot = 0; slot <= m_numSuits; slot++){
for ( int card = 1; card <= m_numSuits; card++){
double probForCard = calcProbForCard(slot, card);
prob += probForCard;
if ( m_depth < 3) {
System.out.println( "Depth: " + Integer.toString(m_depth)
+ ", slot: " + Integer.toString(slot)
+ ", card: " + Integer.toString(card)
+ ", num slots: " + Integer.toString(m_totalSlots)
+ ", prob: " + Double.toString (probForCard) );
}
}
}
if ( m_debug) {
printKey(m_key);
System.out.println("Found prob to be: " + String.format("%1.14f",prob) + "\n");
}
return prob;
}
///////////////////////////////////////////////////////
public double calcProbForCard(int slot, int card){
if ( card == 0)
return 0;
int count = getCount(slot, card);
if ( count == 0)
return 0;
int numCards = count * card;
double probOfCardChoice = (double) numCards / (double) m_totalSlots;
double probOfSlot = 0.0;
for ( int destSlot = 1; destSlot <= m_numSuits; destSlot++){
for ( int destCard = 0; destCard <= m_numSuits; destCard++){
int destCount = getCount(destSlot, destCard);
if ( (slot == destSlot) && (card == destCard))
destCount--; // a card cannot go into its own slot.
int availableSlots = destSlot * destCount;
if ( availableSlots > 0){
double probOfContinuedSurvival = getProbOfContinuedSurvival(slot, card, destSlot, destCard);
if ( probOfContinuedSurvival > 0) {
probOfSlot += probOfContinuedSurvival * probOfCardChoice *(double) availableSlots /(double) m_totalSlots;
if ( probOfSlot > 1.0000001) { // We don't have >= 1.0 to allow a small rounding error
printKey(m_key);
System.out.println("ERROR: Prob is too big: " + Double.toString(probOfSlot));
}
}
}
}
}
if ( m_debug) System.out.println("Found prob of slot to be: " + Double.toString(probOfSlot));
return probOfSlot;
}
///////////////////////////////////////////////////////
double getProbOfContinuedSurvival(int sourceSlot, int sourceCard, int destSlot, int destCard){
String keyForChosenCard = adjustKeyForTakenCard (sourceSlot, sourceCard, m_key);
String keyForContinuation = adjustKeyForCardInSlot(destSlot, destCard, keyForChosenCard);
// check if state obj is in map
Double contProbDouble = m_map.get(keyForContinuation);
double contProb;
if ( contProbDouble == null ){
State contState = new State(keyForContinuation, m_depth + 1);
contProb = contState.getSurvivalProb();
if ( ( m_stepsBetweenCaching == 0 )
|| (m_rnd.nextInt(m_stepsBetweenCaching) == 0 )) { // we'll only insert one in n key,value pairs to the map.
contProbDouble = new Double( contProb);
m_map.put(keyForContinuation, contProbDouble); // we store it for later use
if ( m_map.size() % 10000 == 0)
System.out.println( "Map elm: "+ Integer.toString(m_map.size())
+ ", key: " + keyForContinuation
+ ", prob: " + Double.toString(contProbDouble));
if ( m_debug)
System.out.println( "Added new key to map: " + keyForContinuation
+ " that is item: " + Integer.toString(m_map.size()) );
}
} else {
contProb = contProbDouble.doubleValue();
}
if ( m_debug) {
System.out.println("Key: " + keyForContinuation + ", found cont prob: " + Double.toString(contProb));
printKey(keyForContinuation);
}
return contProb;
}
///////////////////////////////////////////////////////
double getSurvivalProb() {
if ( m_survivalProb == -1) // i.e. not yet set
m_survivalProb = calcSurvivalProb();
return m_survivalProb;
}
//////////////////////////////////////////////////////
int getCount(int slot, int card){
return ( getCount(slot, card, m_key));
}
//////////////////////////////////////////////////////
static int getCount(int slot, int card, String key){
int index = getIndex(slot, card);
// System.out.println("Key: " + key + ", index: " + Integer.toString(index));
String c = key.substring(index, index + 1);
return charToInt(c);
// return ( Integer.parseInt(c, 16));
}
//////////////////////////////////////////////////////
public int getNumSlots(int slot){
if ( slot == 0)
return 0;
int sum = 0;
for ( int card = 0; card <= m_numSuits; card++)
sum += slot * getCount(slot, card);
return sum;
}
//////////////////////////////////////////////////////
int getTotalSlots(){
return m_totalSlots;
}
//////////////////////////////////////////////////////
public static void printKey(String key){
if ( key == null){
System.out.println("Key is null.");
return;
}
System.out.println("key: " + key);
String header = " Card ";
for( int j = 0; j <= m_numSuits; j++){
header += Integer.toString(j) + " ";
}
System.out.println(header);
for ( int slot = 0; slot <= m_numSuits; slot++){
String str = "Slot " + Integer.toString(slot) + ": ";
for ( int card = 0; card <= m_numSuits; card++){
int index = getIndex(slot, card);
str += key.substring(index, index+1) + " ";
}
System.out.println(str);
}
}
//////////////////////////////////////////////////////
public static int getIndex(int slot, int card){
int index = slot * (m_numSuits + 1) + card;
/*
System.out.println( "For slot: " + Integer.toString(slot)
+ " and card: " + Integer.toString(card)
+ " have index: " + Integer.toString(index));
*/
return (index);
}
//////////////////////////////////////////////////////
public static String adjustKeyForTakenCard(int slot, int card, String key){
if( card == 0)
return null; // no cards to give
String decrementedCurrent = adjustKey(slot, card , key, -1);
return adjustKey(slot, card -1, decrementedCurrent, +1);
}
//////////////////////////////////////////////////////
public static String adjustKeyForCardInSlot(int slot, int card, String key){
if ( slot == 0)
return null; // have no slot
String adjKey = adjustKey(slot , card, key , -1);
adjKey = adjustKey(slot - 1, card, adjKey, +1);
for( int i = m_numSuits; i > 1; i--){
int countWithZeroCards = getCount(i,0, adjKey );
if( countWithZeroCards > 0){
adjKey = adjustKey(i,0, adjKey, -countWithZeroCards);
adjKey = adjustKey(1,0, adjKey, countWithZeroCards * i);
}
int countWithZeroSuits = getCount(0,i, adjKey );
if( countWithZeroSuits > 0){
adjKey = adjustKey(0, i, adjKey, -countWithZeroSuits);
adjKey = adjustKey(0, 1, adjKey, countWithZeroSuits * i);
}
}
int zeroZeroCount = getCount(0,0, adjKey);
return adjustKey( 0,0, adjKey, - zeroZeroCount);
}
//////////////////////////////////////////////////////
public static String adjustKey(int slot, int card, String key, int adj){
if ( key == null)
return null;
int count = getCount(slot, card, key);
if ( 0 > count + adj){
System.out.println("Cannot adjust below zero for slot" );
return null;
/*
} else if ( count + adj > 15){
System.out.println("Cannot adjust above 1 char hex limit.");
return null;
*/
} else {
int index = getIndex(slot, card);
String start = key.substring(0, index );
String end = key.substring(index + 1);
String current = intToChar(count+ adj);
return ( start + current + end);
}
}
//////////////////////////////////////////////////////
public static String intToChar(int i ){
char c = (char)(i+48);
return "" + c;
}
//////////////////////////////////////////////////////
public static int charToInt(String s){
char c = s.charAt(0);
int i = (int)c - 48;
if ( m_debug) System.out.println("Char: " + s + " is deemed to be: " + Integer.toString(i));
return (int) i;
}
/////////////////////////////////////////////////////
}
///////////////////////////////////////////////////////////////////////////////
And here's the Java code for the Monte Carlo:
import java.util.Random;
public class RanksAndSuitsSurvival {
private final long m_simsPerBatch = 1_000_000L;
private final int m_numBatches = 100;
private final int m_numSuits = 4; // should be 4
private final int m_numRanks = 13; // should be 13
private int m_numCards;
private int[] m_hand;
private Random m_rnd;
private final int m_rndSeed = 1;
///////////////////////////////////////////////////////////////////////////////
public static void main ( String[] args){
System.out.println("Started...");
RanksAndSuitsSurvival rass = new RanksAndSuitsSurvival();
rass.calc();
System.out.println("\nFinished");
}
///////////////////////////////////////////////////////////////////////////////
public RanksAndSuitsSurvival(){
m_rnd = new Random(m_rndSeed);
m_numCards = m_numSuits * m_numRanks;
m_hand = new int[m_numCards];
for ( int i = 0; i < m_numCards; i++)
m_hand[i] = i % m_numRanks;
}
///////////////////////////////////////////////////////////////////////////////
public void calc(){
long startTime = System.currentTimeMillis();
long survivors = 0;
// The only reason for the nested 'for' loops rather than a single 'for' loop
// is because we wanted to print out the progress intermittently and we didn't
// want to introduce another 'if' inside the main 'for' loop for reasons of speed.
for ( int batch = 1; batch <= m_numBatches; batch++ ) {
for ( long counter = 0; counter < m_simsPerBatch; counter ++){
if (survived())
survivors++;
}
System.out.println("Have now completed batch: " + Integer.toString(batch) + ", after "
+ Double.toString((double)( System.currentTimeMillis() - startTime) * 0.001) + " seconds");
}
double numSims = (double) m_numBatches * (double) m_simsPerBatch;
double prob = (double) survivors / numSims;
double stdDev = Math.sqrt( (1.0 - prob ) * prob / numSims);
long endTime = System.currentTimeMillis();
printoutResults(survivors, numSims, prob, stdDev, endTime - startTime);
}
/////////////////////////////////////////////////////////////////////////////////
public void printoutResults(long survivors, double numSims, double prob, double stdDev, long elapsedTimeMS){
System.out.println("\nFound " + Long.toString(survivors) + " survivors out of " + Double.toString(numSims) );
System.out.println("So the survival probability is estimated to be: " + Double.toString(prob ) );
System.out.println("with a standard deviation of: " + Double.toString(stdDev ) );
System.out.println("Time elapsed: " + Double.toString((double)( elapsedTimeMS) * 0.001d) + " seconds");
}
///////////////////////////////////////////////////////////////////////////////
public boolean survived(){
shuffleHand(); // will shuffle m_hand
return checkHand();
}
///////////////////////////////////////////////////////////////////////////////
// Implementing Fisher–Yates shuffle
public void shuffleHand(){
for (int i = m_hand.length - 1; i > 0; i--) {
int index = m_rnd.nextInt(i + 1);
// Simple swap
int a = m_hand[index];
m_hand[index] = m_hand[i];
m_hand[i] = a;
}
}
////////////////////////////////////////////////////////////////////
// Returns true when the hand 'survived'.
public boolean checkHand(){
for (int i = 0; i < m_hand.length; i++){
if ( ((m_hand[i] - i) % m_numRanks) == 0 )
return false; // did not survive
}
return true; // survived
}
///////////////////////////////////////////////////////////////////////////////
}
No comments:
Post a Comment